203 research outputs found

    Mining Spatio-Temporal Reachable Regions over Massive Trajectory Data

    Get PDF
    Mining spatio-temporal reachable regions aims to find a set of road segments from massive trajectory data, that are reachable from a user-specified location and within a given temporal period. Accurately extracting such spatio-temporal reachable area is vital in many urban applications, e.g., (i) location-based recommendation, (ii) location-based advertising, and (iii) business coverage analysis. The traditional approach of answering such queries essentially performs a distance-based range query over the given road network, which have two main drawbacks: (i) it only works with the physical travel distances, where the users usually care more about dynamic traveling time, and (ii) it gives the same result regardless of the querying time, where the reachable area could vary significantly with different traffic conditions. Motivated by these observations, in this thesis, we propose a data- driven approach to formulate the problem as mining actual reachable region based on real historical trajectory dataset. The main challenge in our approach is the system efficiency, as verifying the reachability over the massive trajectories involves huge amount of disk I/Os. In this thesis, we develop two indexing structures: 1) spatio-temporal index (ST-Index) and 2) connection index (Con-Index) to reduce redundant trajectory data access operations. We also propose a novel query processing algorithm with: 1) maximum bounding region search, which directly extracts a small searching region from the index structure and 2) trace back search, which refines the search results from the previous step to find the final query result. Moreover, our system can also efficiently answer the spatio-temporal reachability query with multiple query locations by skipping the overlapped area search. We evaluate our system extensively using a large-scale real taxi trajectory data in Shenzhen, China, where results demonstrate that the proposed algorithms can reduce 50%-90% running time over baseline algorithms

    Towards Free Data Selection with General-Purpose Models

    Full text link
    A desirable data selection algorithm can efficiently choose the most informative samples to maximize the utility of limited annotation budgets. However, current approaches, represented by active learning methods, typically follow a cumbersome pipeline that iterates the time-consuming model training and batch data selection repeatedly. In this paper, we challenge this status quo by designing a distinct data selection pipeline that utilizes existing general-purpose models to select data from various datasets with a single-pass inference without the need for additional training or supervision. A novel free data selection (FreeSel) method is proposed following this new pipeline. Specifically, we define semantic patterns extracted from inter-mediate features of the general-purpose model to capture subtle local information in each image. We then enable the selection of all data samples in a single pass through distance-based sampling at the fine-grained semantic pattern level. FreeSel bypasses the heavy batch selection process, achieving a significant improvement in efficiency and being 530x faster than existing active learning methods. Extensive experiments verify the effectiveness of FreeSel on various computer vision tasks. Our code is available at https://github.com/yichen928/FreeSel.Comment: accepted by NeurIPS 202

    CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario

    Full text link
    Traffic signal control is an emerging application scenario for reinforcement learning. Besides being as an important problem that affects people's daily life in commuting, traffic signal control poses its unique challenges for reinforcement learning in terms of adapting to dynamic traffic environment and coordinating thousands of agents including vehicles and pedestrians. A key factor in the success of modern reinforcement learning relies on a good simulator to generate a large number of data samples for learning. The most commonly used open-source traffic simulator SUMO is, however, not scalable to large road network and large traffic flow, which hinders the study of reinforcement learning on traffic scenarios. This motivates us to create a new traffic simulator CityFlow with fundamentally optimized data structures and efficient algorithms. CityFlow can support flexible definitions for road network and traffic flow based on synthetic and real-world data. It also provides user-friendly interface for reinforcement learning. Most importantly, CityFlow is more than twenty times faster than SUMO and is capable of supporting city-wide traffic simulation with an interactive render for monitoring. Besides traffic signal control, CityFlow could serve as the base for other transportation studies and can create new possibilities to test machine learning methods in the intelligent transportation domain.Comment: WWW 2019 Demo Pape

    Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation

    Full text link
    Large language models (LLMs) have emerged as a new paradigm for Text-to-SQL task. However, the absence of a systematical benchmark inhibits the development of designing effective, efficient and economic LLM-based Text-to-SQL solutions. To address this challenge, in this paper, we first conduct a systematical and extensive comparison over existing prompt engineering methods, including question representation, example selection and example organization, and with these experimental results, we elaborate their pros and cons. Based on these findings, we propose a new integrated solution, named DAIL-SQL, which refreshes the Spider leaderboard with 86.6% execution accuracy and sets a new bar. To explore the potential of open-source LLM, we investigate them in various scenarios, and further enhance their performance with supervised fine-tuning. Our explorations highlight open-source LLMs' potential in Text-to-SQL, as well as the advantages and disadvantages of the supervised fine-tuning. Additionally, towards an efficient and economic LLM-based Text-to-SQL solution, we emphasize the token efficiency in prompt engineering and compare the prior studies under this metric. We hope that our work provides a deeper understanding of Text-to-SQL with LLMs, and inspires further investigations and broad applications.Comment: We have released code on https://github.com/BeachWang/DAIL-SQ

    Simplified three-dimensional tissue clearing and incorporation of colorimetric phenotyping.

    Get PDF
    Tissue clearing methods promise to provide exquisite three-dimensional imaging information; however, there is a need for simplified methods for lower resource settings and for non-fluorescence based phenotyping to enable light microscopic imaging modalities. Here we describe the simplified CLARITY method (SCM) for tissue clearing that preserves epitopes of interest. We imaged the resulting tissues using light sheet microscopy to generate rapid 3D reconstructions of entire tissues and organs. In addition, to enable clearing and 3D tissue imaging with light microscopy methods, we developed a colorimetric, non-fluorescent method for specifically labeling cleared tissues based on horseradish peroxidase conversion of diaminobenzidine to a colored insoluble product. The methods we describe here are portable and can be accomplished at low cost, and can allow light microscopic imaging of cleared tissues, thus enabling tissue clearing and imaging in a wide variety of settings

    Aluminum Complexes of N2O23‒ Formazanate Ligands Supported by Phosphine Oxide Donors

    Get PDF
    The synthesis and characterization of a new family of phosphine-oxide-supported aluminum formazanate complexes (7a, 7b, 8a, 9a) are reported. X-ray diffraction studies revealed that the aluminum atoms in the complexes adopt an octahedral geometry in the solid state. The equatorial positions are occupied by an N2O23‒ formazanate ligand, and the axial positions are occupied by L-type phosphine oxide donors. UV-vis absorption spectroscopy revealed that the complexes were strongly absorbing (ε ~ 30,000 M‒1 cm‒1) between 500 and 700 nm. The absorption maxima in this region were simulated using time-dependent density-functional theory. With the exception of 3-cyano substituted complex 7b, which showed maximum luminescence intensity in the presence of excess phosphine oxide, the title complexes are non-emissive in solution and the solid state. The electrochemical properties of the complexes were probed using cyclic voltammetry. Each complex underwent sequential one-electron oxidations in potential ranges of ‒0.12 to 0.29 V and 0.62 to 0.97 V, relative to the ferrocene/ferrocenium redox couple. Electrochemical reduction events were observed at potentials between ‒1.34 and ‒1.75 V. When combined with tri-n-propylamine as a coreactant, complex 7b acted as an electrochemiluminescence emitter with a maximum electrochemiluminescence intensity at a wavelength of 735 nm, red-shifted relative to the photoluminescence maximum of the same compound

    Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging

    Get PDF
    The advent of 4-dimensional (4D) light-sheet fluorescence microscopy (LSFM) has provided an entry point for rapid image acquisition to uncover real-time cardiovascular structure and function with high axial resolution and minimal photo-bleaching/-toxicity. We hereby review the fundamental principles of our LSFM system to investigate cardiovascular morphogenesis and regeneration after injury. LSFM enables us to reveal the micro-circulation of blood cells in the zebrafish embryo and assess cardiac ventricular remodeling in response to chemotherapy-induced injury using an automated segmentation approach. Next, we review two distinct mechanisms underlying zebrafish vascular regeneration following tail amputation. We elucidate the role of endothelial Notch signaling to restore vascular regeneration after exposure to the redox active ultrafine particles (UFP) in air pollutants. By manipulating the blood viscosity and subsequently, endothelial wall shear stress, we demonstrate the mechanism whereby hemodynamic shear forces impart both mechanical and metabolic effects to modulate vascular regeneration. Overall, the implementation of 4D LSFM allows for the elucidation of mechanisms governing cardiovascular injury and regeneration with high spatiotemporal resolution

    Modeling of the Rating of Perceived Exertion Based on Heart Rate Using Machine Learning Methods

    Get PDF
    Abstract Rating of perceived exertion (RPE) can serve as a more convenient and economical alternative to heart rate (HR) for exercise intensity control. This study aims to explore the influence of factors, such as indicators of demographic, anthropometric, body composition, cardiovascular function and basic exercise ability on the relationship between HR and RPE, and to develop the model predicting RPE from HR. 48 healthy participants were recruited to perform an incrementally 6-stage pedaling test. HR and RPE were collected during each stage. The influencing factors were identified with the forward selection method to train Gaussian Process regression (GPR), support vector machine (SVM) and linear regression models. Metrics of R2, adjusted R2 and RMSE were calculated to evaluate the performance of the models. The GPR model outperformed the SVM and linear regression models, and achieved an R2 of 0.95, adjusted R2 of 0.89 and RMSE of 0.52. Indicators of age, resting heart rate (RHR), Central arterial pressure (CAP), body fat rate (BFR) and body mass index (BMI) were identified as factors that best predicted the relationship between RPE and HR. It is possible to use GPR model to estimate RPE from HR accurately, after adjusting for age, RHR, CAP, BFR and BMI

    Simulating Developmental Cardiac Morphology in Virtual Reality Using a Deformable Image Registration Approach

    Get PDF
    While virtual reality (VR) has potential in enhancing cardiovascular diagnosis and treatment, prerequisite labor-intensive image segmentation remains an obstacle for seamlessly simulating 4-dimensional (4-D, 3-D + time) imaging data in an immersive, physiological VR environment. We applied deformable image registration (DIR) in conjunction with 3-D reconstruction and VR implementation to recapitulate developmental cardiac contractile function from light-sheet fluorescence microscopy (LSFM). This method addressed inconsistencies that would arise from independent segmentations of time-dependent data, thereby enabling the creation of a VR environment that fluently simulates cardiac morphological changes. By analyzing myocardial deformation at high spatiotemporal resolution, we interfaced quantitative computations with 4-D VR. We demonstrated that our LSFM-captured images, followed by DIR, yielded average dice similarity coefficients of 0.92 ± 0.05 (n = 510) and 0.93 ± 0.06 (n = 240) when compared to ground truth images obtained from Otsu thresholding and manual segmentation, respectively. The resulting VR environment simulates a wide-angle zoomed-in view of motion in live embryonic zebrafish hearts, in which the cardiac chambers are undergoing structural deformation throughout the cardiac cycle. Thus, this technique allows for an interactive micro-scale VR visualization of developmental cardiac morphology to enable high resolution simulation for both basic and clinical science
    • …
    corecore